
Lecture 5

Surface Forces I:Surface Forces I:
Van der Waals Forces



Surface forces

• Surface forces: 
– governs interaction between solid and liquid colloids, 
– AFM tip and the surface p
– stability of liquid films on solid surfaces and in foams etc…

• and ability of gecko to adhere to any surface
(It is due to van der Waals attractive forces between spatulae (1 billion) on ( p ( )
the Gecko’s leg and the wall)

Full et al. (2000), Nature 405, 681-684



Intermolecular Forces: 
C t t ith it ti l fContrast with gravitational forces

17th Century: Newton postulated the law of gravitation 
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G = Gravitational Constant, Mi (i = 1,2) Mass of bodies

r = distance of separation between centers of bodies

r

19th Century: Scientists postulated that one simple force law 

r = distance of separation between centers of bodies

y p p
would eventually account for all intermolecular attractions

The interaction potential w(r) and force F(r) were of the form
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The interaction potential w(r) and force F(r) were of the form
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Intermolecular Forces: 
C t t ith it ti l fContrast with gravitational forces
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n = 1, we have gravitational forces, g

Argument: If Intermolecular Forces are not to extend over long 
ranges then n ≥ 3 How?ranges, then n ≥ 3.  How? 

For simplicity, let us express the general term for interaction 
potential between 2 molecules as:
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potential between 2 molecules as: 

r
Consider a region of space where number density of these 
molecules are ρ (The region can be solid/liquid/gas)molecules are ρ (The region can be solid/liquid/gas)



Intermolecular Forces: 
C t t ith it ti l fContrast with gravitational forces

The summation of all interaction energies of a molecule with all 
h l l i h i l i h i iother molecules in a spherical system with size L is:
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This expression gives us the all important relation of n ≥ 3
Why?    
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Intermolecular force potentials for n ≥ 3
For n < 3, the size of the system is important                        (E.g. 

Gravity: Distant planets and stars interact)

For n ≥ 3, intermolecular force potentials become important
It is for this reason that:

Bulk properties of material is size independent (unless in the 
domains of intermolecular forces)

(Boiling point of water in a test tube = boiling point of water

It i l f thi th t

(Boiling point of water in a test tube = boiling point of water 
in a bucket)

It is also for this reason that:

- As we go to sub micron size distances, properties of material 
h I l l F S T ki O !changes – Intermolecular Forces Start Taking Over !



Interaction between charges

• interaction of two point charges

1 2

04
q qV

rπε
=

• e.g.  for Na+ and Cl- 1nm apart in vacuum:
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Electric dipole moment
• Most molecules are not charged but posess a charge 

distribution

Dipole moment measured in C·m or in debye:p y
301 3.33564 10

dipole moment of 2 electrons separated by 1Å:
D Cm−= ×

• Dipole moment of a molecule can be calculated by taking into

294.8D=1.6 10 Cm−×

• Dipole moment of a molecule can be calculated by taking into 
account the locations and magnitudes of the partial charges 
on all the atoms
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Electrical dipole moment

• Charge-dipole interactionC a ge d po e e ac o
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T ki i t t th l fl t ti• Taking into account thermal fluctuations:
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Interaction between two dipoles
• dipole-dipole interaction
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in case of free rotation the interaction would be zero, but as the dipoles interact 
the rotation is not free even in a gas phase!

• Keesom energy: interaction between freely rotating dipoles
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Polarizability
• Let’s consider a one-electron atom in electric field

2 eµe

from the force balance between the external (field) 
and restoring forces:
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• electronic polarizability is
of the order of volume of a molecule– of the order of volume of a molecule

– can be obtained by summing up contribution from the molecular 
bonds.  



Polarizability

• electronic polarizability is
– of the order of volume of a molecule
– can be obtained by summing up contribution from the molecular bonds.  



Interaction between dipoles

• dipole-induced dipole interaction
2C μ α′1
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• induced dipole-induced dipole interaction
– interaction due to transient dipoles resulting 

from fluctuations of electron distribution.
– called dispersion attraction or London 

interaction
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I1, I2 – ionization energies of the two molecules



Van der Waals interaction
• combines all dipole-dipole interactions. 
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• usually London dispersion dominates 



Van der Waals interaction
• Contribution of the Keesom, Debye and London energies to 

the total van der Waals interaction



Dispersion forces

• Long-range forces, effective from large o g a ge o ces, e ec e o a ge
distances (10nm) down to interatomic 
distancesdistances

• might be repulsive or attractive
• not only bring molecules together but also 

align themalign them
• are affected by the presence of other bodies



Van der Waals forces between macroscopic solids

• Macroscopic approach: 
in 1937 Hamaker calculated the Van der Waals forcein 1937 Hamaker calculated the Van der Waals force 
between two macroscopic spheres
I t ti b t l l d lid• Interaction between a molecule and a solid:
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Van der Waals energy
f i h• for various shapes



This is also why... 
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Spatulae
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Spiderman exists only in movies !
But Seriously, can we possibly make the 

Spiderman costume?



Nano-Gecko
• Gecko tape: molded of poyimide polymer, each 

synthetic hair is 2µm high and 200nm insynthetic hair is 2µm high and 200nm in 
diameter, periodicity 1.6 µm

• Key point: flexibility that allows to bring hairs into y p y g
intimate contact with the surface

• Tape is re-attachable and resist contaminations  

A. Geim et al, Nature Nanomaterials



Lifshitz theory
• The vdWaals forces depend on the presence of the third bodies that was 

not included in our calculations
• Lifshitz approach: materials are treated as a continuum with bulk 

itti itpermittivity
• Result: the same dependencies, different equation for Hamaker constant
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Surface energy and Hamaker constant
• The surface energy can be equated to the work of vdWaals forces required 

to separate two parts of solid to infinite distance 
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Hamaker constants



Derjagin approximation
• When calculating the interaction between the two non –planar 

surfaces it’s convenient to use Derjagin approximation
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Measurement of surface forces
• SFA

• AFM



Problems

• 6.1. What is the van der Waals force per unit 6 a s e a de aa s o ce pe u
area for two planar parallel layers of molecules 
having surface densities of ρσ and ρσhaving surface densities of ρ A and ρ B.

• 6.5. In atomic force microscopy the tip is 
approximated by a parabolic shape with 
curvature R in the end. Calculate vdWaals 
force vs distance. 

• Prove equation 6 38 using Derjagin• Prove equation 6.38 using Derjagin 
approximation.


